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COMMENT 

Semiclassical approximation for methyl-group rotation 

M W G Whittall and G A Gehring 
Department of Theoretical Physics, University of Oxford, 1 Keble Road, Oxford OX1 3NP, 
U K  

Received 13 February 1987 

Abstract. Methyl-group rotation is a one-dimensional example of molecular rotational 
tunnelling. The tunnel splitting of the methyl-group torsional ground state is obtained 
using a path integral formulation and semiclassical approximation. 

Methyl-group rotation is a simple one-dimensional example of the phenomenon of 
molecular rotational tunnelling which has attracted considerable attention in recent 
years, both theoretical (Hewson 1982a, b, Clough et a1 1984, Clough 1985) and 
experimental (Press 1981, Clough and Heidemann 1979). Theoretical interest has 
concentrated on the temperature dependence of methyl-group rotational energy levels, 
which are seen experimentally by inelastic neutron scattering techniques to shift and 
broaden as temperature increases. 

We feel it is desirable to treat the interaction of the methyl group with a lattice 
using a path integral formulation. In this comment we use a path integral formulation 
to obtain the ground-state energy levels of the methyl group in the absence of interac- 
tions with the lattice, using the semiclassical approximation to evaluate the path 
integrals. This corresponds to the physical situation at very low temperatures at which 
the lattice is quiet, although it is recognised that an interaction with the lattice may 
cause effects at zero temperature which are not included here. 

The motivation for this comment is twofold. First, we would like to obtain the 
tunnel splitting of the methyl-group torsional ground state neglecting interactions with 
the lattice using a path integral treatment as a preliminary to the full treatment of the 
problem including the effects of the interactions with the lattice (Whittall and Gehring 
1987). Second, the work presented here will serve as another example of the use of 
trajectories in complex time to evaluate path integrals, which has been of interest 
recently with respect to the double-well problem (Holstein 1986, Radosz 1985). 

Using Feynman and Hibbs’ (1965) formulation of statistical mechanics the density 
matrix for a quantum mechanical system is given by the path integral 

~ 7 )  exp(  -h 1 s [ x ~ ~ ) I )  
P ( x , ,  xi; L’) = 

S [ X ( T ) ]  is the Euclidean action as a functional of the path x ( T ) ,  ‘r is an imaginary 
time variable, L, (x ,  x) is the Euclidean Lagrangian and x = dx/dr .  We are said to be 
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working in imaginary time because the expression (1) for the density matrix, p, in 
terms of the path integral is obtained by substituting an imaginary time interval 
proportional to inverse temperature into the real-time path integral of Feynman's 
(1948) formulation of quantum mechanics, such that the endpoint U = h /  kT, where 
k is Boltzmann's constant and T is temperature. 

We shall evaluate the density matrix for the methyl group using the semiclassical 
approximation (Coleman 1977). The Euclidean action for the methyl group neglecting 
interactions is given by 

where 4 is the angular coordinate of the methyl group with respect to rotation about 
its axis of symmetry and I is the moment of inertia of the methyl group. The potential 
Vo(4) must be a threefold periodic potential. Experimentally it has been found that 
the energy levels of the methyl group at zero temperature are well described by the 
potential 

( 3 )  

To evaluate (1) in the semiclassical approximation we must find the path & ( T )  

VO(4) = Vo(1 -cos 3 4 ) .  

which is a stationary point of the effective action, such that 

I d2$ dVo($) 
d r 2  d 4  

-- +-=O. (4) 

The path $ ( T )  must satisfy the boundary conditions 

4 ( U ) = 4 ,  4(0)  = 4i * ( 5 )  

One solution to ( 4 )  is termed an instanton and this is discussed in Coleman (1977). 
Coleman uses instantons to solve for the ground-state energy levels of a particle in a 
double-well potential and in an infinite periodic potential. We will use the same 
technique for the methyl-group problem which is equivalent to that of a particle in a 
threefold periodic potential. For this case the paths & ( T )  consist of strings of instantons 
and anti-instantons (for which the direction of rotation is opposite to that for the 
instanton). For the boundary conditions +f= 4i = 0, the paths are subject to the 
restriction 

n - i i = 3 m  m integer ( 6 )  

Applying the semiclassical approximation using the instanton method we obtain 
where n and A are the numbers of instantons and anti-instantons, respectively. 

the result 

(7) x (6( n -ti)+ 6 ( n  - ii - 3 )  + 6( n - ti + 3 )  + 6 ( n  -ti - 6 ) + .  . .) 
where U = (9V0/Z)"2, S ,  is the Euclidean action for the path consisting of a single 
instanton and K is a constant which depends on Vo and I .  
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Using the identities 

and 

S( 0)+  S (  0 - 2 ~ / 3 ) +  S( 8 + 2 ~ / 3 )  = 3( 1 -t exp i30 +exp(-i30) +exp i60 +. . .) 
we obtain our final result: 

~ ( o , o ,  U )  = ? j (  v/Th)”’(exp(-t V U ) / ~ T )  

(9) 

x [exp(2KU exp(-S, /h))+2 exp(-KU exp(-S,/h))]  (10) 

where U = h / k T  
In the low-temperature limit, the density matrix projects out the lowest energy 

levels of the system. Thus the energies of the ground torsional levels of the methyl 
group are given by 

E ~ = t h v - 2 h K  exp(-S,/h) 

E ~ 0 . h  =;hv+ hK exp(-S,/h).  

The labels A, E” and E b  are symmetry labels referring to the irreducible representation 
of the CH, symmetry group. 

There is a tendency in the literature when referring to the tunnel splitting of the 
methyl group (e.g. Hewson 1982a, b) to imply that the effect is to raise the E states 
and lower the A states by equal amounts. This is not supported by our derivation of 
the energies of the methyl-group ground torsional levels using a path integral formula- 
tion and the semiclassical approximation. Our results indicate that the energy shifts 
of the E and A states are of differing magnitudes. In another paper (Whittall and 
Gehring 1987) we have shown how a path integral formulation can be used to derive 
the energy levels of the methyl group interacting with a lattice. 

We would like to thank Dr D Waxman for helpful discussions of this work. One of 
us (MWGW) would like to acknowledge financial support from NSERC (Canada) 
and an ORS award. 
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